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Abstract
It is predicted that for sufficiently strong electron–phonon coupling an
anomalous quantum chaotic behaviour develops in certain types of suspended
electromechanical nanostructures, here comprised of a thin cylindrical quantum
dot (billiard) on a suspended rectangular dielectric plate. The deformation
potential and piezoelectric interactions are considered. As a result of the
electron–phonon coupling between the two systems the spectral statistics of
the electromechanical eigenenergies exhibit an anomalous behaviour. If the
centre of the quantum dot is located at one of the symmetry axes of the
rectangular plate, the energy level distributions correspond to the Gaussian
orthogonal ensemble (GOE), otherwise they belong to the Gaussian unitary
ensemble (GUE), even though the system is time-reversal invariant.

PACS numbers: 85.85.+j, 05.45.Mt, 73.21.−b

The possibility of engineering devices at the nano and micro scales has opened a great avenue
for testing fundamental aspects of quantum theory, otherwise difficult to probe in natural
atomic size systems. In particular, mesoscopic structures have played an important role in the
experimental study of quantum chaos [1], mainly through the investigation of the transport
properties of quantum dots [2] and quantum well structures [3] in the presence of magnetic
field. However, some hard to control characteristics of such structures can prevent the full
observation of quantum chaotic behaviour. For instance, the incoherent influence of the bulk on
the electronic dynamics hinders the observation of the so-called eigenstate scars [4] in quantum
corrals [5]. Also, random matrix theory (RMT) predictions to the Coulomb blockade peaks
in quantum dots may fail due to coupling to the environment [6]. Alternatively, suspended
nanostructures, due to their particular architecture, are ideal candidates for investigating as
well as implementing coherent phenomena in semiconductor devices [7, 8]. Moreover, they
can be used to investigate how phonons influence electronic states and affect the system
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Figure 1. (a) Schematic electromechanical nanostruture: thin circular quantum dot on the surface
of a suspended dielectric plate. (b) Four different positions for the centre of the quantum dot on
the plate surface.

dynamics, possibly leading to a chaotic behaviour. Such point is of practical relevance since
it bears the question of stability of quantum computers [9, 10], whose actual implementation
could be prevented by the emergence of chaos [11].

A remarkable characteristic of the quantum chaotic systems is the manifestation of
universal statistical features that occur irrespective to their physical nature (e.g., the energy
spectra of spinless particles). According to RMT the resulting spectra for systems with and
without time-reversal invariance (TRI) are typically described by random matrices of the
Gaussian orthogonal ensemble (GOE) and Gaussian unitary ensemble (GUE), respectively.
This property was conjectured by Bohigas et al [12] and has been firmly established by
theoretical and experimental examination [1, 13]. However, there are exceptions to this
rule, which consist of the special class of time-reversal invariant systems with point group
irreducible representations that can exhibit the GUE statistics [14, 15]. The family of systems
presently known to show this phenomenon is formed by billiards with three-fold symmetry,
which have been experimentally implemented [16, 17] in classical microwave cavities.

In this letter, we predict that certain electromechanical nanostructures can also exhibit
the GOE as well as the GUE spectral statistics both under TRI conditions. We consider a
thin cylindrical quantum dot (billiard) suspended on a rectangular dielectric nanostructure
(phonon cavity), as depicted in figure 1(a). As the electron–phonon interaction is introduced
between the electronic states, restricted to the circular quantum dot, and the phonon modes of
the rectangular cavity an interesting interplay of the system’s two relevant spatial symmetries
takes place. In this respect, although having different dynamics, the present system resembles
the much studied Sinai billiard (see, e.g., [1]), since in the later case chaos arises from the
mismatch between the same two symmetries. It will be shown that for sufficiently strong
electron–phonon coupling, the energy level distribution of this nanostructure exhibits the
GOE spectral statistics if the centre of the quantum dot lies in one of the symmetry axes of
the phonon cavity, whereas the GUE statics occurs if the centre of the dot is located outside
the symmetry axes (refer to figure 1(b)). We also investigate the influence of material and
geometrical parameters on the unfolding of chaos, indicating the conditions for its experimental
observation.

The boundaries of the suspended dielectric plate can be either clamped (C) or free (F),
corresponding to the Dirichlet or Neumann conditions, respectively. To obtain the vibrational
modes of the plate, we use the classical plate theory (CPT) approximation [18], which is well
suited for quasi-two-dimensional mechanical systems. The vibrations of the cavity are thus
described by a vector field (U, V,W) exp[−iωt], in Cartesian components, where

U = −z
∂W

∂x
, V = −z

∂W

∂y
, W =

∑
m,n

AmnXm(x)Yn(y). (1)
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In equation (1), W(x, y) is written in terms of the one-dimensional transverse modes Xm(x) =
sin[kmx] + sinh[kmx] + ζm{cos[kmx] + cosh[kmx]} and likewise for Yn. The modes Xm and
Yn are the solutions of the Bernoulli–Euler equation [18, 19] under the appropriate boundary
conditions. The kinetic and strain energies for the cavity are

K(x, y) = ρ2D ω2W 2/2,
(2)

V(x, y) = D

2

[
∂2W

∂x2
+

∂2W

∂y2

]
− D(1 − ν)

[
∂2W

∂x2

∂2W

∂y2
−

(
∂2W

∂x∂y

)2
]

,

where ρ2D , ν and D represent the two-dimensional density, the Poisson constant and the
rigidity constant of the material, respectively. The Rayleigh–Ritz method is then used to
obtain the coefficients Aij of equation (1), by applying the condition ∂U/∂Aij = 0 to the
energy functional U = ∫

dx dy[K(x, y) − V(x, y)] [19]. Having obtained the vibrational
eigenfrequencies (ωα) and the eigenmodes

(
Aα

mn

)
of the dielectric cavity, an arbitrary deflection

field is written as (Qα(t) = Qα exp[−iωt])

u =
∑

α

[Qα(t) + Q∗
α(t)][Uα(r)ı̂ + Vα(r)̂ + Wα(r)k̂]. (3)

To provide the same level of description to the elastic and electronic degrees of freedom
of the electromechanical nanostructure, we quantize the deflection field of equation (3). This
is done by defining the operator a† (a) that creates (annihilates) a mechanical mode as

a†
α(t) =

√
Vρωα

2h̄
Q̂†

α(t) − i

√
1

2h̄Vρωα

P̂ †
α(t). (4)

Thus, the quantum vibrational field that interacts with the electrons in the circular quantum
dot is given by

û =
∑

α

[
aα(t) + a†

α(t)
]

√
2Vρωα/h̄

[Uα(r)ı̂ + Vα(r)̂ + Wα(r)k̂]. (5)

The electrons, in the free electron gas approximation, occupy the states (κ ≡ (±l, ν);
l = 0, 1, 2, . . .)

φκ(r) = Jl

(
αlν

ρ

R

)
exp[±ilθ ]√

πR|Jl+1(αlν)|

√
2

d
sin

(πz

d

)
. (6)

Here, αlν is the νth root of the Bessel function of order l, R is the radius and d is the width of
the quantum dot.

At low temperatures only the long wavelength acoustic modes are excited and the phonon
cavity can be treated as a continuum elastic medium. Thus, the relevant electron–phonon
interactions are due to the deformation (DP) and piezoelectric (PZ) potentials. The DP
coupling operator is written as CDP�̂(r), where CDP is the deformation potential constant and
�̂(r) = ∇ · û(r) is the relative volume variation. The DP electron–phonon Hamiltonian is,
therefore,

Ĥ DP = CDP

√
h̄

2Vρ

∑
κ ′,α,κ

V DP
κ ′ακ√
ωα

b
†
κ ′
[
a†

α + aα

]
bκ,

V DP
κ ′ακ =

∫
D

φ∗
κ ′∇ · (Uα, Vα,Wα)φκ dr

= −
∑
mn

Aα
mn

∫
D

zφ∗
κ ′[X′′

mYn + XmY ′′
n ]φκ dr.

(7)
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In equation (7), b†
κ (bκ) is the electronic creation (annihilation) operator and the integration is

performed on the domain D, defined by the boundary of the quantum dot billiard.
For a piezoelectric (PZ) nanostructure of cubic crystal symmetry, the electric field

produced by the cavity vibrations is E = [(−214/ε)εxy]k̂ [20], where 14 and εxy are elements
of the piezoelectric and strain tensors, respectively, and ε is the dielectric constant. In the CPT
approximation εxz = εyz = 0. Thus, the piezoelectric potential is (� = d(2z − d)/2)

2
14

ε
�(z)

∑
α

√
h̄

2Vρωα

[
aα + a†

α

]∂2Wα

∂x∂y
. (8)

The PZ electron–phonon Hamiltonian is, therefore,

Ĥ PZ = 2e
14

ε

√
h̄

2Vρ

∑
κ ′,α,κ

V PZ
κ ′ακ√
ωα

b
†
κ ′
[
a†

α + aα

]
bκ,

(9)
V PZ

κ ′ακ =
∑
mn

Aα
mn

∫
D

�(z)φ∗
κ ′X

′
mY ′

nφκ dr.

The electromechanical eigenstates are thus obtained from the diagonalization of

Hamiltonian Ĥ = Ĥ 0 + Ĥ DP + Ĥ PZ written in the basis
{|φκ〉

∏N
α

(a†
α)nα√
nα !

|0〉} of eigenstates of

Ĥ 0 = ∑
κ Eκb

†
κbκ +

∑N
α

(
n̂α + 1

2

)
h̄ωα . N is the number of phonon modes included in each

basis state. It can be verified that Ĥ is time-reversal invariant.
We investigate the dynamical behaviour of the electromechanical nanostructure by

performing a statistical analysis of its spectrum, in terms of: (i) the eigenenergies nearest
neighbour spacing distribution P(s), measured in units of mean spacing energy and (ii) the
average spectral rigidity �3(l), which provides information about the correlation between
energy levels within a normalized energy interval of length l (for technical details see, e.g.,
[1, 13]). For all the analysis we use the first 2500 states, out of 15 000 eigenstates, which
suffice to produce very good spectral statistics.

From exhaustive calculations we found that for sufficiently strong electron–phonon
coupling the observed chaotic behaviour of the nanostructure proved to be quite robust with
respect to variations of geometrical parameters, boundary conditions and basis size. Thus, for
the sake of clearness, throughout this work we consider the representative case of a quantum dot
of radius R = 450 nm and thickness d = δ/5 on the surface of a square phonon cavity of sides
L = 1 µm and width δ = 40 nm. We also assume the clamped (C) boundary conditions for the
four edges of the cavity. It has been verified that the results are similar for the different boundary
conditions, however the clamped plate (X1X2Y1Y2 = {CCCC}) demonstrates more clearly
the roles played by the deformation potential and piezoelectric interactions. Nonetheless,
the variation of some material parameters affects the chaotic behaviour, for instance, the
chaos is stronger for softer phonon cavities and for larger electronic effective masses. In
the calculations, we use the material parameters corresponding to an AlAs dielectric phonon
cavity and an Al0.5Ga0.5 As quantum dot. This choice takes advantage of the very small lattice
parameter mismatch of the interface as well as the large effective mass of the X valley of
AlGaAs [21]. In addition, to set the necessary strength of the electron–phonon coupling we
multiply the corresponding interaction potentials by an arbitrary factor β. Finally, we note
that the observed chaotic behaviour does not result from the coupling of a regular system (the
quantum dot) with an already chaotic system (the phonon cavity). Indeed, by analysing the
spectral statistics of the vibrating plate alone we find a rather regular behaviour.

The interplay between the cylindrical and rectangular symmetries, through the electron–
phonon coupling, destroys all the geometrical invariances, except for the reflection symmetries
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Figure 2. The level statistics for the nanostructure with the DP interaction only and the quantum
dot centred at positions A, B, C and D (figure 1(b)). The left (right) panel represents by histograms
(+ symbols) the numerically calculated P(s) (�3(l)) distribution. The curves indicate the expected
behaviour for regular (solid), chaotic GOE-type (dashed) and chaotic GUE-type (dotted–dashed)
systems. Here, β = 10.

if the centre of the quantum dot is located on a symmetry axis of the plate. This scenario
corresponds to the points A, B and D of figure 1(b). On the other hand, for the centre of the
quantum dot located at C, no symmetries remain. A slight displacement of the quantum dot is
enough to generate a chaotic behaviour, thus the relative coordinates used in the calculations
are: A = (0, 0), B = (0.05, 0.05), C = (0.05, 0.025) and D = (0.05, 0). Figure 2 shows,
for the DP interaction only and β = 10, P (s) and �3(l) for these four cases. In case A, the
spectral statistics indicates a somewhat regular dynamics3, but in B the occurrence of quantum
chaos is clear and the level distributions are well described by the predictions of GOE random
matrices. The same occurring for the equivalent case D. The more interesting result, however,
is obtained for C, for which the statistics belongs to the GUE class, although the system is
time-reversal invariant.

This effect was first predicted by Leyvraz et al [14] and observed experimentally [16, 17]
in microwave billiards with only the three-fold symmetry. In such case there are two classes
of eigenstates: real singlets and complex conjugate doublets, which present the GOE and
GUE statistics, respectively. In our case the electron states, equation (6), naturally provide the
necessary complex representation through the angular momentum quantum number l. Note
that l = 0 and l = ±1,±2, . . . play, respectively, the role of singlet and doublet states.
The coupling between electron and phonon systems is responsible for generating chaos and,
according to Ĥ DP and Ĥ PZ, the electron interacts with phonon modes α, each of definite parity.
If the dot is centred at a symmetrical locus, e.g., B or D, the parity makes the Hamiltonian
matrix real by blocks (up to global phases) and the GOE statistics is obtained. When the

3 Calculations made for a suspended {FFFC} cavity show a well-defined GOE statistics for case A.
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Figure 3. The calculated spectral rigidity for case C and β equal to: 1 (open circle), 3 (filled
circle), 5 (×) and 10 (+). Once more the curves represent regular (solid), GOE (dashed) and GUE
(dotted–dashed) type of systems.
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Figure 4. The nearest neighbour spacing distribution for case D, where the DP and PZ interactions
are included and β = 10 for both. The curves correspond to GOE (dashed) and GUE (dotted–
dashed) statistics.

reflection symmetry is broken, as in C, the electronic angular momenta are coupled and
the Hamiltonian is complex, exhibiting the GUE statistics (a detailed analysis will appear
elsewhere [22]). The same effect is obtained when the boundary conditions of the cavity are
changed, in which case it can generate, for instance, the GUE statistics in locus D for the
{FFFC} nanostructure.

The dependence of the spectral rigidity �3(l) on the electron–phonon coupling strength
is illustrated in figure 3. For the situation C and again considering only the DP interaction, we
take β = 1, 3, 5 and 10. As β increases, the calculated statistics gradually converge to the
GUE prediction. Note that the numerical results are never well fitted by the GOE case. The
inclusion of more basis states does not change the observed results significantly, however, the
effect is favoured by changing some material parameters, for instance, by using softer phonon
cavities, thinner plates and including the PZ interaction.

Finally, examination of equations (8) and (9) shows that, individually, both the DP and
PZ interactions preserve the reflection symmetry of the matrix elements with respect to the
{x, y} axes and the diagonal axes. However, when acting together the reflection invariance is
broken and the spectrum statistics of loci B and D must change from GOE to GUE. Figure 4
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confirms this effect by showing the P(s) distribution for the quantum dot at D, with the DP
as well as PZ interactions included with β = 10. The agreement with the GUE statistics is
excellent, in contrast to case D of figure 2. Because the AlGaAs alloy is a weak piezoelectric
material, the DP coupling shows a stronger effect in promoting the chaos, whereas the main
action of the PZ interaction (in the presence of DP) is to break the system’s spatial symmetry.

To conclude we briefly describe results obtained for other types of suspended structures,
which will be included in a forthcoming publication [22]. Regarding the phonon cavities, we
investigated different boundary conditions, in particular {FFFF} and {CFCF}. The conclusions
are essentially the same and the ideas presented here can be extrapolated to these distinct cases.
We also considered a quantum dot of rectangular symmetry. In such a case chaotic behaviour
was observed only for very particular asymmetric configurations, but never resulting in GUE
statistics. This aspect shows the importance of the interplay between the circular symmetry of
the electronic states with the rectangular symmetry of the cavity phonon modes and, therefore,
the fundamental relevance of the architecture of the nanostructures.
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